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STOPPING RULES AND ORDERED FAMILIES OF DISTRIBUTIONS

John Bather”
Mathematics Division, University of Sussex
and
Center for Stochastic Processes, University of North Carolina
at Chapel Hill

Key words and Phrases: confidence intervals; monotone likelihood
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ABSTRACT

There are good reasons for using sequential methods in some statistical
decision problems. but a stopping rule that is helpful for deciding whether
0 > 0or 8 <0 my not be so good for estimating 0. This paper considers the
construction of confidence bounds on a real parameter and investigates the
relation between the ordering of boundary points that are accessible under the

stopping rule and the natural ordering of the parameter space.

*This research was supported by the Air Force Office of Scientific Research

Grant No. F49620 85 C 0144.
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1. INTRODUCTION j’:
There are many ways of defining an ordering of probability distributions ::.:?E
so that large values of the parameter which labels the distributions correspond .'
to large values of the random variables themselves. For example, Lehmann ::,SEEE
(1955) gives a comparison of several definitions and an application to the E?:i:
) sequential probahility ratio test. We shall be mainly concerned with 2
stochastic ordering, which is well-known in applied probability, and the 3{;‘;{
stronger relation of ordering by monotone likelihood ratios (m.l.r.). The "
latter is familiar in the theory of hypothesis testing, where it leads to p':—:"‘
uniformly most powerful one-sided tests for fixed samples from a distributicn ’:‘:'::'E:
in a 1-dimensional exponential family. A closely related application of m.l.r. :'3::::':
is the construction of uniformly most accurate confidence bounds on the unknown """.‘
parameter: see Lehmann's book (1959), pages 78-80. The aim of this paper is to ‘:gg
3 investigate confidence bounds determined after a random stopping time. As we :ii,?:
shall see, the above optimality property of one-sided confidence bounds is “:
usually lost when we allow sequential sampling. However, for a large class of E:':
stopping rules, we can define an ordering of the boundary points so that the 5:‘
distributions of stopping points are stochastically ordered with respect to the 1.;,
parameter. In general, this weaker ordering relation seems to be the best that .i
can be obtained, which underlines the need for caution when interpreting .:
confidence bounds and intervals based on sequential data. :h
In a recent book, Siegmund (1985) illustrates the advantages and ';:,'
disadvantages of sequential methods. For hypothesis testing., we can achieve a %E:
. significance level and power comparable to fixed sample procedures with a ";’
substantial reduction in expected sample size. On the other hand, sequential 3
’ sampling often leads to less accurate estimation. In the design of clinical 'EE
trials, estimation may be a secondary consideration: for ethical reasons, it is ’y
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ity
important to reject an inferior treatment as soon as possible, rather than :;:,:
"Q'(
using it on a larger sample of patients to improve the estimates of its '::::j
:'l‘,:'
performance. Previous research has been mainly concerned with procedures for ®
T
h
comparing different treatments and stopping rules designed to control the error . ‘:':‘:
4 .(
probabilities of decisions about their relative merits. More recently, .:‘:::
o
Siegmund and others have turned to questions of estimation from sequences of
oy
observations produced by various stopping rules. In particular, they have made .:l::
¥
substantial progress in constructing confidence intervals, in spite of the '.."::
Oy
difficult probability calculations and delicate approximations of ten needed to g
RN
deal with curved stopping boundaries. .F::
W)
The construction of confidence intervals after a stopping time is based on :‘.::':3.::
At
standard methods. Consider first a random variable Z whose distribution @
)
depends on a real parameter 6 and write ¢(z.8) = PG(Z 2 z). In general, a ;}""
o
lower confidence bound for 6 can be obtained by using the fact that :-3
S
Pe(¢(2.8) 2 a) 2 1-a, (1) @
AN
for any fixed a, 0 { a { 1. Let 8(z) = inf{6: ¢(z.8) 2 a}, so that ':«"'
"
v
¢(z.8) 2 a => 8(z) < 8. It follows from this definition and (1) that .:;
Wt
Po(8(Z) 2 6) 2 Po(e(Z.6) 2 a) 2 1-a. (2)
¢] :] N
i
Thus, 6(z) is a lower confidence bound for 6, given an observed value z of the :'h
ig'i.:
- ey
random variable. Upper confidence bounds 6(z) can be constructed similarly, n%:‘.,_
for the same confidence coefficient 1-a, and we then obtain confidence __
>
‘o N
intervals with coefficient 1-2a from the inequality \:-{:
A
- - e wh
Po(8(Z) < 0 < 8(2)) 2 1-Pg(8(Z) > 8) - Po(6(2) < 8). =
This probability is at least 1-2a, because of (2) and a similar property of TN
- “\).\
6(2). 4 :‘\‘-.(-\
s
The above argument extends in a straightforward manner to more complicated ol
sample spaces where the data consists of stopped sequences of observations. ‘;}}‘:
Ry
".l
-‘\."
EN
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Let Xy Xg - be independent observations from the probability density

f(x:0) = exp{6x - ¥(6)}. (3)
with respect to a o-finite measure u on the real line. This represents a
1-dimensional exponential family of distributions with mean y'(6) and variance

¥v"(6) > 0. The natural parameter space of the family is a real interval and we

n
suppose that the true value of 0 in this interval is unknown. Let Sn =3 X,
1

for n 2 1 and note that any stopped sequence of observations (xl.xz.....xn) is
represented by the sufficient statistic (n,s), where Sn= s. Suppose that the
stopping time is defi.ed by splitting the (n,s) plane into continuation and
stopping regions. It is helpful to think of upper and lower stopping sets,
separated by the continuation region. Since y"(8) > O, the mean y'(8) is
increasing in 6 and we can imagine that, roughly speaking, points (n,s) in the

upper stopping set favour higher values of 6. However, we need a more precise

ordering relation on the points of the stopping region before we can justify
constructing confidence bounds on 6.

The idea is to order all the accessible boundary points (n,s) in a
counter-clockwise sense around the continuation region, but this can be done in
several ways. The definition given in Section 4 of this paper has been used
previously by Siegmund (1978), in obtaining confidence intervals for a normal
mean, and also by Jennison and Turnbull (1983), for estimating a binomial
probability. The authors of the second paper considered a different ordering
of boundary points based on the ratio s/n, the maximum likelihood estimate of
the unknown probability, but this produced very similar results in the cases
they computed. Siegmund (1985) also mentions the ratio s/n as a possible basis
for ordering normal data.

In general, we must determine a function ¢(n,s,0) which represents the

WERTTe e v 6 & 8 LI F SIS VT VR TEES 2 WK RV T HEENY Y X FXD N R

probability of stopping the sequence of observations at a point "above” (n.s).
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The function can then be used to find confidence bounds on 8 in the same way as
¢(z.0). It is important to note that the construction described earlier does
not depend explicitly on any relation between the parameter 6 and the ordering
of the sample space. In principle, any ordering of points (n.s) in the
stopping region can produce valid confidence bounds. However, it is possible
to ensure that the function ¢(n,s.8) is increasing in 8. This general property
does not seem to have been established previously, although it is obviously
useful in computing confidence bounds from the formula
8(n,s) = inf(6: ¢(n,s.0) 2 a}. (4)

The rest of this paper is organized as follows. The next section gives a
simple example which demonstrates the advantages and disadvantages of
sequential procedures. It also suggests an arbitrariness in the construction
of confidence bounds which is not easy ty eliminate entirely. However, we can
distinguish between bounds that are formally valid and more sensible
constructions that are also related to the unknown parameter. Section 3 is
concerned with partial orderings of probability distributions. It contains a
brief description of and comparison between stochastic ordering and ordering by
m.l.r. There is a new result about the most likely permutation of a number of
independent random variables from an ordered family of distributions. The
property that the most likely permutation corresponds to the ordering of the
family holds for m.1l.r. but not, in general, for stochastic ordering: see
Proposition 4. The ordering of boundary points for the random walk (Sn. n 1}
is considered in Section 4 and it is proved that, for a large class of stopping
times N, the distributions of the random point (N'SN) are stochastically
ordered with respect to 6. This means that the function ¢(n.s,0) is increasing
in 6. The final section of the paper gives another illustration, based on a

simple acceptance/rejection scheme for diffusion processes with unknown drift

parameters. It shows that the intuitive counter-clockwise ordering of random
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} stopping points with respect to the drift can be destroyed by conditioning on }:
: rejection. The paper concludes with some tentative remarks about the design of : :‘,:

stopping rules. f-
. 2. EXAMPLE iy
; .’

Consider independent Bernoulli trials with success probability p and let

b 2

) ’ X = t1, according as the i-th trial results in success or failure, i=1,2,... v
s Thus, we have an exponential family of distributions which can be expressed in :
:. the form (3) by writing 6 = %log(p/q). ¥(8) = log(eo-o»e-e), where g=1-p. '
) However, the usual notation for Bernoulli trials will be more convenient here. il
:f Suppose that we must decide, after observing a number of trials, whether p > % :SE.:.‘
E or not. Various stopping ruies will be considered for the random walk (Sn}. :S::
n e

: Sn= f X In each case, the terminal decision at a point (n,s) with Sn= s will e
' depend only on the sign of s : we conclude that p > % if s > 0, that p < % if "
": ‘- s < 0 and we choose either decision by tossing a coin if s = 0. '
;E ’ ¥We now turn to the stopping rules. Rule 1 is to take 4 observations and ;
5: then reach a decision about p, according to the sign of S4. Rule 2 is a E‘_
‘ sequential modification of it: we observe Xy and Xy and stop if Sz= 2, but if g‘;
82= O we take another 4 observations. This modification can be used repeatedly ‘

to produce a series of rules. Rule k is specified as follows: observe the

¥
Ivr,
o

3 sequence (Sl.S ....} and stop as soon as s2n= 12, but if S2n= O for ;
'. n=1,2,...,k-1, take 4 more observations and stop at n = 2k+2. The limiting :,.;

? form of these rules, with k = ®», can be regarded as a sequential probability E:

. ratio test. As we shall see, Rule ® is an improvement on its predecessors both * :
‘ with regard to expected sample size and with regard to error probability. !

o Let m.k(p) denote the expected sample size for Rule k and let ak(p) be the "E

) probability of reaching a terminal decision that p > %. The corresponding :"

error probability is given by: \

4

N,

S 5

1 wy
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e(p) =a,(p). O0<p<H (5)
e(P) =12 (p)., H%<p<l.
We now prove that, for all p,
m, (p) 2 my(p) 2 ... 2 my(p). (6)
e, (p) 2 ex(P) 2 ... 2 e, (p). (7

Proof. Clearly, ml(p) = 4 and m2(p) = 2+2pqml(p). It follows that
mz(p) < ml(p). with equality only if p = 4. Then by considering S,,
mk+l(p) = 2+2pqu(p) and an inductive argument shows that mk+1(p) < mk(p) for
all k. As k » =, m (p)> m,(p)= 2(p%+q%) !

The proof of (7) is similar, but we need to use (5). Note that
al(p) = p2(1+2q) and ak+1(p) = p2+2pqak(p) for k=1,2,... . It is easy to show
by induction that ak+1(p) > ak(p) if 0 < p < ¥ and ak+1(p) < ak(p) if
% <p <1l. Ve also have ak(p) = p, whenever p = 0, % or 1, so the relations
(7) follow immediately from (5). In fact, explicit formulae for ak(p) can be
obtained and, in the limit, a_(p) = pz(p2+q2) -1

The inequalities (6) and (7) show that, so far as terminal decisions are
concerned, the performance of the stopping rules improves as k increases.
However, their relative merits for estimation are quite different. Consider
first the unbiased estimation of p. It turns out that there is just one
unbiased estimator ;k' based on Rule k. In particular, ;1= (Sq+4)/8 and its
variance is pq/4. For k 2 2, ;k= (82+2)/4 is unbiased and this has variance
Pq/2. Standard methods can be used to verify that ;k is the unique unbiased
estimator of p, but we shall omit the details. Thus. for Rules 2,3,..., the
minimum variance unbiased estimator of p depends only on the first two
Bernoulli trials. From this point of view, Rule 1 is preferable.

Now consider confidence bounds on p. Instead of making a comparison of
different rules, we shall restrict attention to Rule 2. The stopping region

consists of 7 points: (2,-2), (6,-4). (6,-2). (6.0), (6.2), (6.4). (2.2), and
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let us label these 1,2,...,7 in counter-clockwise order.- Their labels here are f?

related to p in the following sense. Let ¢(j.p) be the probability that the fﬁ

random walk stops at a point whose label is at least j. Then ¢(j.p) is ;?‘

- non—-decreasing in p for j=1,2....,7. This is a consequence of the general ‘ég
result which will be proved in Section 4. However, there are several possible ;ﬁ

) orderings of the 7 points with this property. For example, it is not difficult b

-

to verify that it also holds if the labels (1,2,3,4,5,6,7) are replaced by :g
(1,3,2,4,6,5,7), respectively. Another ordering of the stopping region that is ?
plausible from a different point of view is obtained on replacing the original ‘ii

labels by (2,1,3,4.5,7,6). It is arguable that the point (6.4), representing 5 §§

/ successes in 6 trials, indicates higher values of p than the point (2,2). To ég
fix ideas, suppose that we observe a sequence of Bernoulli trials which >

: terminates at the point (6,4). In order to construct a lower confidence bound 5:’
on p, we need to specify the set A of boundary points above the data. There ??T

are 26 = 64 possible definitions of A. It is easy to see that 32 of these i:
i would lead to the trivial claim that O { p { 1, but the others produce gzi
; confidence bounds that make more sense. For example, the 3 possible orderings EE:
\ mentioned above would lead to different statements of the form: p { p < 1, for ﬁ
. the same confidence coefficient. ;:
3. ORDERING OF RANDOM VARIABLES ;E»
. We now consider two different partial orderings of probability 2
{ distributions on the real line. A brief outline of their properties is given &::
' below. Let Y and Z be random variables with distribution functions G and H, fi
; respectively. Note that, if we define G—l(u) = inf{y: G(y) 2 u}. for -
; 0 < u < 1, then the distribution of Y can be described by writing Y = G 1 (U). :E
Y where U is uniformly distributed on [0,1]. ES
! oN
, b
; Definition 1. We say that Y is stochastically less than Z and write Y Sst Zif ;‘
, N
Y

7

e
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E(v(Y)) € E(v(Z)) for every hounded increasing function v on R.

Proposition 1. Y Sst Z <=> G(z) 2 H(t), t ¢ R. Hence, if Y Sst Z. we can write
Y= G-I(U). Z= H-I(U). where U is uniformly distributed on [0,1]. For this

representation of the joint distribution, the inequality Y { Z always holds.

Suppose further that Y and Z have probability densities g and h, with

respect to a common o-finite measure u on R.

Definition 2. We say that Y is less than or equal to Z in the sense of
monotone likelihood ratio and write Y gr Z if h(t)/g(t) is non-decreasing in

teR (excluding t such that g(t) = h(t) = 0).

Proposition 2. Y Sr Z=>Y Sst Z.

Proofs of the above results can be found in Lehmann’'s paper and there is a
clear exposition. for discrete random variables., in the paper by Whitt (1979).
This also introduces the notion of uniform conditional stochastic order
(u.c.s.0.), which is investigated more generally in Whitt (1980). For cur
purposes, it will be enough to note one of the results from the last paper.

For distributions with probability densities on the real line, u.c.s.o. is
equivalent to m.1.r. in the following sense. Let B C R be a Borel set and
consider the probability distributions of YB and ZB obtained by conditioning Y

and Z, respectively, on the event B.

Proposition 3. YB Sst ZB for every event B <=> Y Sr Z.
There is another way of seeing that ordering by m.l.r. is stronger than

stochastic ordering. Suppose that we have an ordered sequence of random

variables Yl.Y2.....Yk and that they have probability densities B8y - By
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)
with respect to p. Suppose further that they are independent of one another
and consider whether the most likely ordering of their observed values is

Yl < Y2 <...¢ Yk.

Proposition 4. (i) Let Yl.Yz....,'k be independent random variables and suppose
that Y1 Sr Y2 Sr"'sr Yk' Let 1:(#1. 2""'"k) be any permutation of the
integers 1,2,....k. Then

P(Y1 < Y2 $...¢ Yk) 2 P(Yﬂlg szS---S ka).

(ii) This property does not hold, in general, for k 2 3 independent random

Y

variables such that Y1 Sst Y2 gst...gst K

Proof. We shall establish Part (i) by showing that
g,(v)ex(ys). - g (yy) 2 g,l(yl)sw2(y2)---z"k(yk) (8)
holds at every point of Ck = {(yl.yz.....yk)! Yy < Yo €...¢€ yk}. The required
result will then follow by integrating over the set Ck‘
Note first that g, (y,)g,(y5) 2 g2(y1)g1(y2) if y,{ yy. sO (8) holds for
k = 2. Now let k 2 3 and assume that

g,(y)ex(yy). -8 (¥ ) 2 gal(yl)ga2(y2)--.gok_l(yk_l) (9)
holds in Ck—l' for any permutation o of 1,2,...,k-1. If "= k, then (8) is a
trivial consequence of (9), so we may assume that, for some j < Kk, WJ= k and
wk( k. We define o in (9) by o= if 1 23,1 k-1, and aJ= LI It is now
a straightforward matter to deduce (8). by using the fact that, since yjs Yi+

g () 2 g, (v e, (v )/e, (v) = &, (vy)g, (v,)7E, (v)-
k k J k J
The proof of Part (ii) is based on a counter-example. Let Yi.Yé.Yé be
independent and uniformly distributed on [-1.1]. Define Yl= min(Yi.O). Y2= Yé.
Y. = max(Yé.O). Proposition 1 can be used to show that Y1 < st Y2 < st Y3. On

3
) the other hand,
)
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P(Y1 [4 Y2 < Y3) =3 but l’(Y2 < Yl < Y3) = P(Yl < Y3 < Y2) =5 :N
It is easily shown that the result of Part (i) remains true for stochastic :":
tFut
ordering in the case k=2. However, it does not hold for k 2 4 and this can be ®
L) .‘
demonstrated by extending the above example. A ':
Cd
(4
e
]
4. ORDERING OF STOPPED SE CES
n R
We now return to the random walk model described earlier, with Sn= 3 Xy :..-
1 por
n 2 1, where the steps x; are generated by independent observations from the \
distribution defined by (3). We restrict attention to stopping times specified *;:i
by two sequences of numbers. Let -~o ¢ a < bn { » for n=1,2,... and let "
!
s . W
N = min{n21 Sn ¢ (an.bn)). (10) i
Clearly, N { m = min{n 2 1: a = n}. if this is finite. If an< bn for all n, ::_‘
we set m = @ and the stopping time N may be infinite. However, it is assumed ti
RS
in such cases that N is finite with probability 1, for any value of the ;_;
»
parameter 6. This means that the stopping point (N.SN) always has a proper :.;;
N
[Nt
distribution. e
%
The stopping region associated with N consists of points (n,s) such that "-:,
1 {n <{mand either s £ a ors 2 bn' This can be regarded as a totally .:
.":r' \
ordered set. Lo
bt
iy
ol
Definition 3. Let (n.s) and {(n',s') be points of the stopping region. We say ;.:-:
D
that (n',s') is above (n.s) and write (n',s') } (n.s) if one of the following -:::-‘:
!.\I
conditions holds: ':?;':
i n'=n and s'2 s, )
(1) 2 '2'-;
. ' o
(ii) n'<{n and stn.. LA
(i11) n'>n and s ¢ a . )
For example, it is a straightforward matter to check that either ":"
2~
S
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(n',s') } (n.s) or (n,s) } (n'.s'), for every pair of stopping points, and that
the relation } is transitive.

We are now in a position to prove the main result. Let

#(n.5.8) = Pa((N.Sp)} (n.s)). (11)

Theorem. Under the above conditions, the function ¢ is non-decreasing in 6:

¢(n.s.08°) 2 ¢(n,s.6)

whenever 68°'> 6, for any point (n.s) in the stopping region.

Proof. We shall couple together two realisations of the random walk,
corresponding to the parameter values 8 and 8'. It follows from (3) that the
likelihood ratio for a single observation x is exp{(6'-9)x-(¥(6')—¥(6))} and
this is increasing in x if 6'> 0. Hence, we can associate random variables X
and X' with 6 and 6°, respectively, such that X Sr X'. Let F(x;0) be the
distribution function determined by (3). Then, according to Propositions 1 and
2, we can describe the two distributions by writing X = F-I(U:B) and

X'= F-I(U;B'). where U is uniformly distributed on [0.1]. Now let Uy, be
independent observations from the uniform distribution and consider the

n n
realisations generated by setting S = X x,, S'= 2 x;, where x_= F l(u.:B).
n 1 i n 1 i i i

xi: F-l(ui:e'). and hence Xy < xi always holds. We must compare the stopping

points associated with 8 and 6'. Given the sequence (ul.u2....). we can apply

. (10) to determine points (N'SN) and (N’.Sﬁ.). say. Then it follows from

o

AP A N R R P I A R I S o e e AN M T T e m T " a ™ y
E.‘_a,*_._.‘. e O o B T T T B R A T L R T e R AR L TS ) AR TR,

IO R NG J,:;\\. n PN . "\.‘;\:w.':-."\.:\"-. N B0Y -:::\3 "\"';\f\'-..’\'-’\"\ SN
" DfadarnTs bl ¥ ‘\*s'xnh§i su»iibdhﬁchkzkbﬂn S o

> B+

Definition 3 and the fact that SA 2 Sn. for all n 2 1, that (N .SN.)} (N.SN).
Thus, we have generated the stopping points from independent uniform random
variables in such a way that the event [(N.SN)} (n.s)] is contained in the

event [(N'.Sﬁ.)} (n.s)]. The theorem follows immediately.
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Remark. The above argument can also be used to show that, for any bounded
increasing function v defined on the stopping region, E(v(N.SN)) < E(V(N‘.SN.))
if 6 < 8'. Hence, the random point (N.SN) is stochastically increasing in 8,

in the sense of Definition 1.

5. ILLUSTRATION

The monotonicity of the function ¢(n,s.0) established in the theorem is
useful in constructing confidence bounds, but it does not mean that such bounds
are optimal. The uniformly most accurate confidence bounds mentioned earlier
are obtained only if the random stopping point (N.SN) is increasing with
respect to 6 in the stronger sense of m.l.r. This is exceptional: roughly
speaking, fixed samples lead to uniformly most accurate one-sided confidence
intervals, but random stopping times do not.

We can easily see why, by examining likelihood ratios for the exponential
model (3). After n observations, suppose we find that Sn= s. The likelihood
ratio for parameter values 6 < 6' is exp{(0°'-0)s-(y¥(6')—¥(6))n}. This is
increasing in s, so if the sample size is fixed in advance at n, the m.1l.r.
property holds. Now suppose that (n.s) and (n',s') are points of the stopping
region with n'#2 n. The second point yields a higher likelihood ratio if and

only if

0')~y(6
(67-9)

We could extend this comparison of points to produce an ordering relation on

s'-s 2 L. (n’'-n).

the stopping region but, in general, the relation would depend on our choice of
parameter values, since y"(68) > O and the coefficient (¥(68')~ ¥(6))/(06'-8) is
not constant. In the case of independent Bernoulli trials, it is not difficult
to devise random stopping times in such a way that the m.l.r. property holds,
but it is worth noting that in the example discussed in Section 2, only Rule 1

with a fixed sample size produces a stopping region that has the m.l.r.

AT TR S TR e a8,

A,
AN

".l . ”
PRI AN N A
Byl e

n._'v > " »

N sle :.,"-,: ALY

L -

5
7

o‘-‘l.‘f

1)
:l"

2

-,




13
property.

Finally, consider a simple acceptance/rejection scheme based on a process
in continuous time. Let S(t)= Ot+¥W(t) for t 2 O, where S(0)= O and W(t) is a
standard Wiener process. Suppose that S(t) is a summary of responses in [0,t]
to a new medical treatment and that positive values of the unknown parameter 6
represent a higher risk of serious adverse effects. Let b and m be fixed
positive numbers and let the decision procedure be specified as follows: stop
and reject the treatment as soon as S(t)= b if this occurs for some t < m;
accept the new treatment if S(t)< b for 0 { t { m. A detajled evaluation of
this procedure is given in Siegmund's book (1985): see Chapter 3. Here, the
aim is to illustrate some consequences of Propositions 3 and 4.

Since the boundary prevents any overshoot, the stopping region consists of
two lines in the (t,s) plane. Strictly speaking, the theorem of Section 4 does
not cover processes in continuous time, but it is easy to verify that, for a
counter-clockwise ordering of the boundary, we have stochastic ordering of the
distributions of the terminal point with respect to 8. For two values 6 and 6'
of the drift parameter, the likelihood ratio at any boundary point (t,s) is

exp{(6°-08)s - %(8'2-6%)t}. (12)
In cases of acceptance, t = m and this is increasing in s provided that 6'> 6.
Rejected cases occur on the line s = b, for t < m, and there the likelihood
ratio is increasing in the counter-clockwise direction (i.e. decreasing in t)
if and only if |6']| > |8].

Consider the results of applying the scheme independently to k different
treatments and suppose the corresponding drift parameters are in the order:
2...20, . Intuitively, it might seem that the most likely arrangement of

2 k
the corresponding terminal points is (tl.sl)} (t2.s2)}...} (t,-5,). using the

61>9

obvious extension of Definition 3. However, this may not be true. Proposition

4 applies if lell 2 |02| 2...2 lekl. but let us assume that this last condition

-

-
2
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does not hold. We can argue-conditionally. if all the treatments are accepted.
Because of the m.l.r. property on the line t = m, given acceptance, the most
likely arrangement is b s 2 Sy 2.-:2 S, - However, after rejection, the
observed arrangement of the final times could be quite misleading. Conditional
on rejection, we have the m.l.r. property based on |8, rather than 6, and the
possibility of false rejections (i.e. cases with 91< 0) makes the situation
more complicated. The most likely arrangement, given rejection, need not be
the one with tls t2$...$ tk( m.

More generally, suppose we have a stopping region determined by two smooth
boundary curves: s = a(t) and s = b(t). The process {S(t)} is allowed to
continue so long as a(t)< S(t)< b(t). We can see by using (12) that on the
upper boundary curve, the likelihood ratio is

exp{(06°-0)(b(t)- %(6+6°)t)}
and this is increasing in the counter-clockwise direction if 6°'>0 and if the
derivative b'(t) < %(6+06'). In the special case where b’(t)= O, we noted that
negative values of the drift led to complications in relating the order of
parameter values to the order of stopping points on the boundary. Here we can
say roughly that the idea of a counter-clockwise ordering of boundary points
remains valid. conditional on stopping near the point (t,b(t)). provided that
we are concerned with values of the drift leading towards the boundary (i.e.
6 > b'(t)). Similar remarks apply to the lower boundary for values of the
drift 8 < a'(t). It seems that we should try to design stopping rules so that
there is always a high probability that the random process will reach a

stopping point where the expected increments lead towards the boundary, rather

than away from it.
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